
BugMiner: Automating Precise Bug Dataset
Construction by Code Evolution History Mining

Xuezhi Song∗, Yijian Wu†∗, Junming Cao∗, Bihuan Chen∗, Yun Lin‡, Zhengjie Lu∗, Dingji Wang∗,
and Xin Peng∗

∗ Fudan University, Shanghai, China

{songxuezhi, wuyijian, 2111024004, bhchen, luzj19, dingjiwang2049, pengxin}@fudan.edu.cn
‡ Shanghai Jiao Tong University, Shanghai, China

lin yun@sjtu.edu.cn

Abstract—Bugs and their fixes in the code evolution histories
are important assets for many software engineering tasks
such as deriving new state-of-the-art automatic bug fixing
techniques. Existing bug datasets are either manually built
which is difficult to grow efficiently to a scale large enough for
massive data analysis, or lack of precise information of how
bugs are introduced and fixed which is critical for in-depth
analysis such as buggy/fixing code identification. Moreover, the
types of the bugs are typically missing in the existing bug
datasets, limiting the possibility of developing high-precision
type-specific approaches for enterprise-level purposes. In this
work, we propose BugMiner, an approach to automatically
collecting bugs from code repositories by isolating the critical
changes of the bugs. We also propose a learning-based ap-
proach for automating bug type classification with relatively
small manual labels of bug types. We evaluate our approach
regarding the precision of bug information and the efficiency
of the bug-mining process with 2,082 bugs automatically
mined from 100 open-source projects. We demonstrate the
improved effectiveness and efficiency in bug-fixing location
identification, compared to the SOTA BugBuilder, and high
recall and precision in bug-inducing location identification. We
also compare our learning-based bug classification approach
to traditional baseline method, indicating about 17% improve-
ment in classification effectiveness under macro-F1.

Index Terms—bug dataset, bug-fixing, bug-inducing, auto-
matic bug mining

I. INTRODUCTION

Bug datasets serve as a pivotal cornerstone for data-

driven bug detection and fixing techniques. Automatically

collecting precise bug-related data from real-world code

repositories is essential for buidling large-scale dataset that

is significantly useful for facilitating various research areas

and industrial productivity improvement.

Recent works such as BEARS [1], BugSwarm [2], and

BugBuilder [3] have emerged to automate the construction

of real-world bug datasets. BEARS and BugSwarm collect

reproducible bugs by monitoring the buggy and patched

program versions from Continuous Integration (CI) system.

Although the presence of CI data supports high precision of

the collected bugs and the corresponding fixes, the difficulty

in obtaining CI data restricts the bug data collection from

the vast range of open-source repositories. BugBuilder is a

†Yijian Wu is the corresponding author.

well-designed tool to find bug-fixing revisions and to identify

bug-fixing changes. It is able to collect large amount of bugs

and can be used to construct a large bug dataset, similar

to but much larger than Defects4J, without additional data

from outside of the code repository, which is applicable in

any code base with proper test code.

However, existing bug datasets, including Defects4J [4]

and those mined by recent research advantages, suffer from

the following weaknesses. First, the fixing patches of bugs

are difficult to be identified automatically and precisely.

The bugs in Defects4J are manually validated for precision,

which prevents it from growing automatically. Other bug

datasets may include the bug fixing commit which contains

the fixing patch but the patch may not be minimal due

to the fact that a commit in real-world development may

contain multi-purpose source code changes. Second, the

bug inducing changes are typically not included in the bug

datasets. The location where a bug is fixed is not necessarily

the same as where it is induced. A bug dataset that exactly

marks not only bug fix patches but also bug inducing

changes would enable a wide range of data-driven research

such as regression bug detection. Third, bug types are not

properly categorized. Missing required bug types constraints

the task-specific applications of bug analysis. For example,

the bug fixing patterns for null-pointer-exceptions and for

concurrency bugs could be very different and may need type-

based filtering in a large-scale bug dataset in order to find

bugs with specified types.

In this work, we propose BugMiner, an approach to auto-

matically collecting bugs from code repository. In contrast

to existing work, BugMiner stands out by mining bugs

directly from the code evolution history. It seeks potential

bug-fixing commits by heuristic-based commit filtration and

searches for the related test cases in the code repository.

Consequently, BugMiner is able to mine a more extensive

set of bugs with precision by running the tests accordingly.

Moreover, BugMiner introduces a novel method for local-

izing critical bug changes based on delta debugging. This

method demonstrates a significant efficiency improvement

over the enumeration-followed-by-search strategy adopted

by BugBuilder.

1919

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00201

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

20
1

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

We also publicize a large precise bug dataset that contains

not only the bug fixing patch for each bug but also the bug

inducing code, alongside the specific test cases that trigger

these bugs. These test cases ensure the precise of our bug

dataset, such that, for instance, a bug-fixing commit (bfc)

is expected to pass the tests, while a bug-inducing commit

(bic) should consistently fail them. The critical changes that

induce the bugs and fix the bugs are correspondingly isolated

from the original source code changes in the bug-inducing

commit and bug-fixing commit such that the bug information

is precise. We also employ a learning-based approach to

categorize the bugs by the root causes of the bugs so that

the bug types can be automatically determined.

In our experiments, we find that BugMiner is 1.2 times

faster than the state-of-the-art bug dataset construction tool

BugBuilder [3] by mining 432 bugs from 100 open source

projects within 40 hours. BugMiner mined 2,082 bugs in

around six days (157 hours), even more efficiently than

BugBuilder, which mined 1,246 bugs in similar time. We

also evaluate the effectiveness and efficiency of BugMiner

in identifying bug-fixing locations and find that BugMiner

produces about 1.5 times as many accurate bug-fixing loca-

tions in only three-fifths of time compared to BugBuilder.

Moreover, BugMiner is able to identify over 80% bug-

inducing locations, whereas BugBuilder is not capable. Re-

garding automatic bug classification, we find our learning-

based approach is about 17% better in F1-score than the

baseline TBCNN model, with regard to the manually labeled

1,618 bugs. The source code of BugMiner is available at

https://github.com/SongXueZhi/BugMiner. The mined bug

dataset and its demonstration is available at https://bugminer.

github.io/.

In the rest of this paper, we first define basic concepts

in Section II. In Section III, we present the overall process

of BugMiner and explain the technical details in each step.

In Section IV, we evaluate our approach and dataset by

answering four research questions regarding the efficiency

and accuracy in identifying bug fixing/inducing locations

and the accuracy and diversity of bug categorization. In

Section V, we discuss the strengths and weakness of our

approach and the dataset. Finally, we conclude our work in

Section VII.

II. TERMINOLOGY AND PROBLEM DEFINITION

We define the terminology used in this work and formu-

late the definition of bugs and the process of bug dataset

construction.

Commit and Revision. In a code repository, a commit

operation typically corresponds to two revisions, i.e., a

revision before the commit operation and a revision after

the commit operation. For the ease of presentation, we use

the term “commit” to refer to the revision after the commit

operation, which is also widely used in industrial contexts.

Therefore, the term “commit” and the term “revision” are

used interchangeably to represent the revision after the

specific commit operation. If a commit c is applied in the

code base, we denote the revision after the commit as c. The

revision before this commit is denoted as c−1. We also use

the term “commit c− 1” to refer to this revision.

Bug-fixing Commit. A bug-fixing commit regarding a bug

b is a commit c in which the bug b does not exist but does

exist in the prior commit c − 1. We denote a bug-fixing

commit as bfc. Hence, the commit bfc-1 is the buggy revision

just prior to the bfc.

Bug. We define a bug as a five-tuple (bfc, bfloc, biloc, spec,
type), where bfc is the bug-fixing commit, bfloc is the bug-

fixing location where the bug-fix patch code exists, biloc is

the bug-inducing location containing the buggy code, spec
is the specification (typically a test case) that the correct

program should hold (test passes) but the buggy program

breaks (test fails), and type is the type of the bug that is

categorized along various dimensions such as root cause or

impact.

Note that the bfloc in the bug dataset should indicate the

minimal change set in the bug-fixing commit, i.e., the critical

bug-fixing patches/changes. This implies that any irrelevant

changes like refactoring or introducing new features in the

commit should be filtered out. The same minimal principle

also applies to biloc.

Definition of the Bug Data Collection Problem.

Given a code repository Repo, our target is to con-

struct automatically a bug set BUG = {bug|bug = <
bfc, bfloc, biloc, spec, type >}, where ∀bug ∈ BUG, ∃spec
s.t. bfc ∈ Repo, spec holds in bfc but is broken in bfc-1,

biloc ∈ bfc-1 is the location of code changes that directly

breaks the spec, bfloc ∈ bfc is the location of code changes

(patch) that fix the faulty program to meet the spec, and type
is the type of the bug determined by certain classification

criteria.

While we use the spec as a guide to identify a bug, the

above definition still imposes certain limitations in practice.

We still need to address the following questions: (1) How to

represent a spec and determine if a commit meets or breaks

it? (2) How to identify the biloc, as there may be more than

one location that cause the bug? For example, in the case of

a null-pointer-exception (NPE) bug depicted in Figure 1a,

the bug-inducing location could be determined as either

the missing null-pointer detection before accessing pomFiles
(line 17 in Figure 1b) or the incorrect value assignment of

pomFiles in the method getPomFiles() (lines 24 and

line 27 in Figure 1c).

Problem Reformulation. In this work, we opt to use test
cases as the formal specification. The pass or failure of the

test cases indicates whether a commit meets or breaks the

specification. Consequently, we can use the test cases to

determine whether the bug exists in a specific commit as

long as we can run this test in the corresponding commit.

Based on this, we are able to determine at which commit the

bug is exactly introduced and identify the exact code changes

that induce the bug. Therefore, we introduce the concept of

Bug-inducing Commit and redefine the bug location biloc.

Bug-inducing Commit. A bug-inducing commit regarding

a bug b is a commit c in which the bug b does exist but does

1920

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

not exist in the prior commit c−1. We denote a bug-inducing

commit as bic.

Bug location (biloc). The bug location is the minimal set

of the source code changes that directly causes the bug in

the buggy revision bfc-1. This code is introduced in bug-

inducing commit bic.

Therefore, we redefine a bug as a six-tuple (bfc, bic,
bfloc, biloc, testcase, type) where the testcase is the test

case related to the bug. We further reformulate the bug

collection problem as follows. The bug dataset BUG is

{bug|bug= < bfc, bic, bfloc, biloc, testcase, type>}, where

∀bug ∈ BUG, ∃spec s.t. for commits bfc and bic ∈ Repo,

the testcase passes in bfc and fails in bfc-1 and bic, and

the testcase passes in bic-1 or the commit bic-1 does not

contain the code tested by testcase, the source code change

set biloc ∈ bfc-1 introduced in bic is the direct cause of the

failure of testcase, the source code change set bfloc ∈ bfc
is the fixing patch of the buggy program, and type is the

type of the bug.

III. METHODOLOGY

A. Overview

BugMiner consists of three essential steps: 1) collecting

bug raw data, 2) locating critical changes, and 3) classifying

bugs. The actions of each steps are depicted in Fig. 2, where

a rounded-rectangle represents an action in a step and a

rectangle represents the output/input artifact of the related

action.

In the raw data collection step, BugMiner traverses all

commits in the code repository to find all potential bug-

fixing commits pBFCs. Then, it searches for a new test case

in each commit pbfc ∈ pBFCs and automatically runs the

test case to verify whether it passes in the pbfc. If the test

case fails, the pbfc is discarded. A pbfc is only confirmed to

be a bfc when the test case passes in pbfc and fails in pbfc-
1. We also collect commit message and related bug reports

(if available) for each bfc as additional description for each

bug, which will be useful for automatic classification later

on.

Then, for each bug, BugMiner isolates the critical changes

that fix the bug (bfloc) and those possibly induce the bug

biloc out of all the source code changes in bfc and bic,

respectively, by applying a delta-debugging-base algorithm.

Finally, a deep-learning based model is used to automati-

cally classify bugs into different types, such as logic errors,

boundary condition issues, performance problems, etc.

B. Collecting Bug Raw Data

We first search in the commit message texts for commits

that have high possibility of fixing bugs by commits filtering.

Then we search for test cases that could be related to

the bugs. Finallly we associate commit message and issue

description to the bugs for richer information that may

describe the semantics related to the bugs.

1) Filtering Commits: To collect potential bug-fixing

commits pBFCs , we examine the commit message of each

commit for the presence of keywords such as fix, closed, bug,

issue and other related terms. The heuristics is widely used

in existing researches [5], [6], [7] which aim at gathering

the commits that are likely to be related to bug fixes.

2) Searching for Test Cases: Given a potential bug-fixing

commit pbfc ∈ pBFCs, we search for related test cases in the

following three sets, which we belive have high possibility

to contain the test cases directedly related to the bug under

investigation.

• Test cases present in pbfc-1 and also present in pbfc. These

test cases that represent pre-existing tests that were not

executed at the time the bug was introduced. It may also

include test cases provided by the developer specifically

for reproducing the bug before attempting to fix it.

• Test cases added in pbfc. These test cases were introduced

in pbfc , but they do not exist in pbfc-1.

• Test cases added in δ commits after pbfc. These test cases

are likely submitted by the developers as supplementary

test cases following the bug fixes. Here, we use δ = 15.

The last two search spaces imply that we need to migrate test

cases from c to cinv Here, c represents the commit where

the test case was added, and cinv represents the commit that

needs to be tested but does not include the target test cases.

In this case, we will use the test case migration technique

proposed in RegMiner [8] for the migration process.

Note that, although we may find multiple test cases for

a bfc, we currently consider each test to be specific to an

individual bug. Finally, we will group them based on the

results of bug-fixing location identification. Tests with the

same bug-fixing location will be considered as tests for the

same bug.

Once a test case passes on pbfc and fails on pbfc-1, we

identify the pbfc as a bfc and relate the test case to the bug.

3) Relating Commit Message and Issue Description to the
Bug: If a bfc references an issue in the commit message and

the issue description also mentions the bfc, we consider the

issue to be related to the bug. In such cases, we relate the

bfc and the issue to the bug in consideration because it is

very likely that the issue includes a description of the bug

and explanatory information.

In practice, we extract the issue ID from each bfc’s

commit message by the regular expressions such as

”ˆ#\d+|[a-zA-Z]+-\d+$” to establish the tracing from

commit to issue. Inversely, in order to find commit ID from

issue description, we extract the commit ID in issue descrip-

tion by the regular expression ”\b[0-9a-f]{7,40}\b”,

or employ a GitHub API1 to get the events which also record

the related commit ID.

C. Locating Critical Changes

1) Identifying Bug-Fixing Location: We employ the

state-of-the-art Probabilistic Delta Debugging (ProbDD) [9]

1https://docs.github.com/en/rest/issues/timeline?apiVersion=2022-11-28#
about-timeline-events

1921

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

(a) Bug-Fixing Changes (b) Possible Bug-Inducing Changes
(c) Another Location of Possible Bug-
Inducing Changes

Fig. 1: Multiple code change sets may be taken as the bug-inducing changes. This NPE bug in method parseSubProjNum
is fixed by adding an if statement. Two possible sets of code changes could be considered as bug-inducing.

Fig. 2: Overview of BugMiner

technique to locate the critical bug-fixing changes bfloc
in the bfc. ProbDD is designed for test case reduction

tasks, which is suitable for finding the minimal set of

source code that fixes the bug. Given all changed ele-

ments diff in bfc, our purpose is to search for diff∗ =
argmindiff ′∈diff |diff ′|, f(diff∗) → T , where the func-

tion f represents the act of reverting changes on bfc and

executing the tests and T represents the outcome of the test,

indicating a test failure. That is, if we revert all these changes

back to the bfc-1, the program will exhibit the desired bug

(i.e., test failure). Therefore, the task aims to search minimal

set of changes that, when reverted, still cause the test to fail.

Note that, ProbDD assumes the independence between

any code elements. Therefore, we use existing source code

decomposition technique [10] to group the code elements in

the changes into independent parts. Before the decomposi-

tion, we first use Diff/TS [11] to capture the code changes

between the bfc and bfc-1. We choose Diff/TS because it

enables fine-grained change analysis between two commits,

keeping focus on the structural differences in the code. This

facilitates the identification of the specific code changes that

are critical for bug fixing in the bfc.

2) Identifying Bug Location: According to the definitions

provided in Section II, we locate the buggy code (deter-

mining biloc) by searching for the bug-inducing commit

(bic) and pinpointing bug-inducing changes in the bic, and

ultimately finding the location of bug-inducing changes in

the commit bfc-1 to serve as the biloc .

The buggy code locating process is described in Algo-

rithm 1. The process first searches for bug-inducing commit

bic starting from the bug-fixing commit bfc backwards in the

code repository by a git-bisect-based approach introduced by

RegMiner [8]. This searching step (Line 1) basically runs

the test for each commit examined and is able to correctly

and efficiently handle the commits that cannot be correctly

compiled (so-called “no feedback commits”). The output

bug-inducing commit bic is the commit c that satisfies either

of the two cases:

(1) The test fails at commit c and passes in commit c−1.

In this case, we confirm that c is the commit that introduces

the bug because, when we revert these changes on c, the

bug will disappear. Now that we have c as the bic, we

utilize Diff/TS to extract all the changes between bic and

bic-1 and apply the decompose [10] technique to partition

these changes into independent parts before using ProbDD

to locate the minimal bug-inducing changes.

(2) The test fails at commit c but a compilation error

occurs at commit c − 1. In this case, we are not sure

whether c exactly introduces the bug. It is very likely that

the bug already exists earlier in history because of some

1922

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Locating Buggy Code

Input : Bug-Fixing Commit bfc; Test Case test; Code
Repository repo

Output: The location of buggy code biloc

// Search for Bug-inducing Commit
1 bic = git bisect based search(bfc, repo, test);
2 diff = [];
3 if bic passes and bic− 1 fails then
4 diff = AST diff(bic, bic− 1);

// Decompose the changes into distinct
parts according to the relations
between code change elements

5 grouped diff = decompose(bic);
// Identify critical bug-inducing changes

6 buggy code = delta debugging(bic, grouped diff);

7 else if bic passes and bic− 1 is compile-error then
// Estimate feature/function code elements

8 feature codes = feature estimate(bfc, test, repo);
// Search for feature-introdcution commit

9 bic′ =
search feature intro commit(bic, feature codes);

// Get all changes related to the bug
10 diff = AST diff(bic, bic′ − 1);

// Identify critical bug-inducing changes
by tracing analysis

11 buggy code = backward tracing(diff, test, bic);

12 else
// This should be an invalid case.

13 return null
// Align buggy_code in bic to bfc-1

14 bloc = code alignment(bfc− 1, bic, buggy code);
15 return biloc

newly added code representing new features. Therefore,

we employ the feature estimation technique proposed by

RegMiner [8] to identify which code elements may represent

the feature/function in the test code. We then track the

feature code elements from c − 1 backwards until these

code elements cannot be further tracked back at commit c′2.

Commit c′ is the commit that the feature does not exist.

Then we consider the commit c′ + 1 as the commit that

actually introduces the bug (the bic′ at Line 9). Now we can

extract all code changes between c (the original bic output

at Line 1) and bic′-1 (the commit c′ previously mentioned),

with the help of Diff/TS, as an aggregated code change

set related to bug-inducing. In order to identify the code

changes that are directly related to the bug, we use code

instrumentation techniques3 to record the execution traces

of the test in commit bic. These traces only include code

changes between bic and bic′-1. We then conduct backward

tracing by data flow and control flow analysis to find the

specific code elements that are responsible for the erroneous

state such as assertion failure or triggering exceptions. For

instance, in the bug depicted in Fig.1a, Line 9 will throw a

2The track-back is implemented by an code-overlapping-based algorithm.
If the overlapping code drops below a threshold � (0.5 by default), we say
the code elements representing the feature no longer exist

3https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/
Instrumentation.html

null pointer exception between the fix. If the changes in the

bug-inducing commit are as in Fig.1b, then the method will

be traced back to Line 17 of Fig.1b, where the statement

itself is causing the bug to be executed due to the absence

of null pointer detection. If the changes in the bug-inducing

commit are as in Fig.1c, then the method will be traced

back to Line 26 of Fig.1c, where the incorrect variable

initialization within the if-else statement occurs.

Finally, we use a differencing technique [12] to align

the identified critical bug-inducing changes, in either case

described above, with the source code in the commit bfc-1,

where the exact location of the bug is specified.

D. Classifying Bugs

Bugs can be categorized based on symptoms, root causes,

or fix patterns [13], [14]. In this work, we focus on the root

causes of bugs. We adopted the bug type taxonomy from Ni

et al.’s work [15], as summarized in Table I.

In their work, Ni et al. [15] employed Tree-Based Con-

volutional Neural Network (TBCNN) [16] for bug classi-

fication. However, pre-trained representations of commits,

such as CC2Vec [17] and FIRA [18], have demonstrated

superior performance over CNN- or RNN-based models in

tasks such as commit message generation and bug-fixing

patch identification. This could be attributed to the models’

ability to utilize large-scale unlabeled data through pre-

training tasks, which is especially helpful when the labeled

data is limited.

Therefore, we propose a hybrid bug classification model

HyBuC (pronounced like high-buck), which learns semantics

from bug reports, commit messages, and bug-fixing/inducing

locations through pre-trained models for bug classification.

1) Bug Type Labeling: Since Ni et al. [15] did not open-

source their dataset, we manually annotated 1,618 bugs in

total, which included all 809 bugs from Defects4J as of July

2023 and a subset of 809 bugs from the 2,082 bugs mined by

BugMiner. Two of the authors independently labeled each

bug, thoroughly examining the bug-fixing commit patch,

commit message, and associated bug report during the

labeling process. A third author was introduced to resolve

disagreements. We utilized Cohen’s Kappa coefficient to

measure the agreement, and it achieved a value of 0.63,

which indicates moderate agreement. We train the HyBuC

model with these labeled data.

2) Classification Model: Fig. 3 illustrates the overall

framework of HyBuC. HyBuC takes bug-fixing/inducing lo-

cations and source code, commit messages, and bug reports

as the input. It utilizes feature encoding networks to encode

each source of input separately and concatenate the encoded

feature representation vectors as a whole embedding vector

of the bug. Finally, a fully connected neural network (FCNN)

is used to produce a bug type label as the bug classification

result. For situations where the bug report is not available

and/or the commit message is empty, we pad them to the

fixed sequence size when batching.

Let’s denote the input of HyBuC as b =
〈br, commit msg, bfloc, biloc〉, and its output as bug

1923

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Bug Types and Descriptions

Cause category Description

01 Function The overall function cannot be implemented normally or there exists errors in the set of steps
used to solve a particular problem or calculation, including errors in calculations. error
implementations of algorithms.

02 Interface Interaction issues within components, between components or with other systems, including
mismatched calls and incorrect opening, reading, writing, or closing of files and databases.

03 Logic The logic is incorrect, including incorrect branch statement, ignoring extreme values or
situations(like null checks and boundary values), incorrect logic test condition or logical order,
incorrect loop logic.

04 Computation Using wrong operators, using incorrect operands(including misuse of operand in operational
expression) or non-sufficient precision of data.

05 Assignment Data initialization error, incorrect access to the field, inconsistent subroutine parameters,
incorrect data range or type, incorrect input or output data, inspection issues of abnormal data
or incorrect variable/constant name.

06 Others All the bugs not in the above categories.

Fig. 3: Overview of the Hybrid Bug Classification Approach (HyBuC)

type l. Here, the bug report br and commit message consist

of natural language (NL) tokens. The bug-fixing location

bfloc and bug-introducing location biloc can be represented

as 〈Pa, Pr〉, where pa ∈ Pa and pr ∈ Pr represent the

added and removed patches. Each pa and pr consist of npa

and npr code tokens, respectively. The bug type l ∈ L,

where L is the set of bug types mentioned in Table I.

We employ CodeBERT [19], a widely-used, transformer-

based pre-trained model for code-related tasks, to encode

br and commit msg, generating the pooled output as em-

bedding ebr, ecommit msg ∈ R
1×D, where D represents the

dimension of the representation. To enable batch training

and inference, each input instance is padded or truncated to

the same length.

For each patch p in the bfloc and biloc, we utilize

both PatchNet [20] and CC2Vec [17] to encode the patch

into a vector ecode bfloc or ecode biloc, respectively. PatchNet

is a 3D-CNN model that extracts code change representa-

tions and has demonstrated effectiveness in commit-related

tasks [20]. CC2Vec is a pre-trained model based on the

hierarchical attention network designed for code commit rep-

resentation. It has been proven to enhance the performance

of PatchNet when used together [17]. After concatenating

all the added patches in bfloc, we encode them using

PatchNet and CCVec4 to obtain ebfloc add cc, ebfloc add patch ∈
R

1×D. Similarly, we obtain ebfloc remove cc, ebfloc remove patch

for the removed patches. Then, we set ecode bfloc =
[ebfloc add patch; ebfloc remove patch; ebfloc add cc; ebfloc remove cc] ∈
R

4×D. Similarly, we get ecode biloc ∈ R
4×D

Next, we concatenate ebr, emsg, ecode bfloc, ecode biloc to ob-

tain eb ∈ R
10×D. After passing it through FCNN and the

softmax normalization function, we obtain the probabilities

∈ R
1×L for each label. We adopt the focal loss function [23]

to alleviate the bug type imbalance problem.

4Since CC2Vec is pre-trained on a dataset based on the C programming
language, and the bugs in Defects4j and BugMiner are in Java, we had to
continue pre-train CC2Vec with 1,670 samples from Defects4J, BugMiner,
and other widely-used datasets [21], [22] for commit message generation
tasks. The pre-training task is the same as the original CC2Vec, which is to
generate commit messages from code commits. In total, 92,331 instances
of data are used for pre-training.

1924

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENT

In this section, we report the experiments conducted to

address the following research questions:

RQ1: What is the efficiency of BugMiner to collect bugs

compared to existing approaches?

RQ2: What is the efficiency and effectiveness of Bug-

Miner to locating bug-fixing code compared to existing

approaches?

RQ3: What is the efficiency and effectiveness of Bug-

Miner to locating bug-inducing code?

RQ4: What is the accuracy of BugMiner in determining

bug types compared to existing approaches?

A. Experiment Setup

1) RQ1: Efficiency of Collecting Bugs: To conduct a

comparative experiment, we used BugMiner and BugBuilder

with the same set of project candidates, consisting of 100

open-source projects. We measured the number of bugs

collected by each tool within a fixed time period and also

recorded the total number of bugs collected after consuming

all the projects without time restrictions.

2) RQ2: Efficiency and Effectiveness of Locating Bug-
Fixing Code: To address RQ2, we conducted experiments

to compare BugMiner and BugBuilder on the bug-fixing

location identification task. For the task, we also use 809

bugs selected from Defects4J, which are manually validated,

as the ground-truth benchmark for evaluation.

We compare the effectiveness of BugMiner and Bug-

Builder by contrasting the token-level sizes of their results

with the ground-truth critical changes in Defects4J. If the

result exceeds the size of the actual critical change, we

consider it an erroneous outcome case, which affects the

precision of each method. Furthermore, if a method fails

to provide any result, we consider it a failure case, which

affects the precision and recall of each method. Additionally,

we compare the efficiency of the two methods by contrasting

their average execution times.

3) RQ3: Efficiency and Effectiveness of Locating Bug-
Inducing Code: To the best of our knowledge, there is no ex-

isting approach that is comparable in locating bug-inducing

code. Therefore, we conducted an open-world experiment to

address RQ3. In the 100 projects from RQ1, BugMiner was

asked to locate bug location on the bug collection results.

We evaluate the efficiency by calculating the average time

taken for bug localization across all bugs. Subsequently, we

evaluate the effectiveness by sampling the results for human

validation of their accuracy. Two graduate students with over

3 years of Java development experiences were invited to

participate in the validation process. They were asked to

answer the following questions for each sampled bug:

• What is the root cause of the bug?

• Does the BugMiner’s output help you fix the bug?

They were asked to sample 50 bugs for validation. The

first question aimed to help them understand the bugs, while

the second question aimed to validate the accuracy of the

method’s results. After they completed the validation of all

cases, we introduced a third person, one of the authors of

this paper, to facilitate a discussion to resolve any conflicts

that arose.

4) RQ4: Accuracy of Bug Classification: To address

RQ4, 1,618 bugs, as described in Section III.D, sampled

and manually annotated from Defects4J and BugMiner, are

used as our dataset. We divided the dataset into training

and testing sets in an 8:2 ratio. We employed TBCNN [15]

as the baseline model, which extracts fix trees from bug

fixing commits as features. We followed the training settings

as presented in the paper [15], including the optimizer,

dropout, etc. For evaluation, we calculated common metrics

in classification tasks, namely macro-precision, macro-recall,

and macro-F1-score.

Our experiments were performed on a Linux server with a

10-core 40-thread Intel(R) Core(TM) i9-10980XE CPU @

3.00GHz, an NVIDIA GeForce RTX 3090 GPU, and the

Ubuntu Linux 22.04 operating system.

B. Results

1) RQ1: Efficiency and Effectiveness of Collecting Bugs:
The results are shown in Table II. Firstly, within the lim-

ited time(40 hours), BugMiner achieved high efficiency.

BugMiner collected a total of 432 defects, which is 20%

more compared to BugBuilder. Secondly, when the time was

unlimited, BugMiner performed even better effectively in

bug collection. After running for about 8 weeks, BugMiner

has collected a total of 2,082 defects across 100 projects,

which is 67% more compared to BugBuilder.

2) RQ2: Efficiency and Effectiveness of Locating Bug-
Fixing Code: We discovered that BugMiner achieved high

accuracy, recall rates and efficiency, as shown in Table III.

Firstly, BugMiner generated 658 bug-fixing locations out

of 809 bugs, resulting 81.3% recall, 41.3% higher than

BugBuilder. For the 658 generated bug-fixing locations, 464

of them are complete and concise, which means BugMiner

achieved the precision of 70.5%. The 464 accurate bug-

fixing locations, out of total 809 bugs, bring a high accuracy

of 57.4%, much higher (19.3% improvment) than Bug-

Builder’s 38.1% (308/809). Notably, for 56 bugs, BugMiner

provided even more concise bug fixing locations. However,

the precision of BugMiner is 25.6% lower than BugBuilder

because BugBuilder tries to enumerate all of the possible

bug-fixing locations in practice. The high complexity of this

algorithm will restrict the capability of generating correct

bug-fixing locations successfully. Finally, the average time

spent by BugMiner for generating each bug-fixing location is

0.3 hours, which is 0.2 hours less than BugBuilder, showing

that BugMiner is more efficient.

3) RQ3: Efficiency and Effectiveness of Locating Bug-
Inducing Code: The results are shown in Table IV. We

discovered that BugMiner also achieved high accuracy, re-

call and efficiency. BugMiner generated 1667 bug-inducing

locations out of 2,082 bugs collected with the recall rate

of 80.1%. After sampling 50 instances and being validated

manually, we found that, for 42 out of the 50 instances,

1925

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance of Bug Collection

Technique Bugs Collected Within Fixed Time(40h) Bug Collection Without Time Restriction
BugMiner 432 2,082 (157h)

BugBuilder 360 1,246 (142h)

TABLE III: Performance of Locating Bug-Fixing Code

Technique Bug-fixing Commits Identified Bug-fixing Locations Accurate Locations Precision Accuracy Recall Average Time
BugMiner 809 658 464 70.5% 57.4% 81.3% 0.3h

BugBuilder 809 324 308 95.1% 38.1% 40.0% 0.5h

TABLE IV: Performance of Locating Bug-Inducing Code

Technique Generated Bug-inducing Locations Accurate Locations Accuracy Recall Average Time
BugMiner 1667 (2,082) 42(50) 84.0% 80.1% 0.4h

TABLE V: Performance of Bug Classification Models

Datasets
TBCNN HyBuC

macro-P macro-R macro-F1 macro-P macro-R macro-F1
Defects4J 0.426 0.362 0.391 0.612 0.556 0.583
BugMiner 0.432 0.351 0.387 0.587 0.510 0.546

Avg 0.428 0.357 0.389 0.600 0.533 0.565

BugMiner generated accurate bug-inducing locations, mean-

ing that the accuracy of BugMiner for sample set is 84%.

Notably, the efficiency is also acceptable. The time spent

for each bug-inducing location is 0.4 hours, which is longer

than identifying bug-fixing locations due to the complexity

of this task.

4) RQ4: Accuracy of Bug Classification: Overall, both

TBCNN and HyBuC exhibit relatively low classification

accuracy, as shown in Table V. This is primarily due to

the severe class imbalance in our bug dataset, where most

bugs belong to the Logic and Function categories, and

other categories contain very few bugs. This leads to the

model’s inability to classify these less frequent categories

effectively. Compared to TBCNN, HyBuC improves the

average precision and recall by 0.172 and 0.176, respectively.

However, HyBuC performs less effectively on the BugMiner

than on the Defects4J, since some bugs in BugMiner lack

associated bug reports whereas all bugs in Defects4J include

bug reports.

V. DISCUSSION

Our experiment demonstrates that BugMiner can effec-

tively construct a runnable bug repository from code evo-

lution history, and extract critical information such as bug

locations and bug types. This research can serves as a fun-

damental advancement in facilitating data-driven software

engineering tasks. However, the quality and diversity of the

dataset remain significant concerns.

On one hand, ensuring data quality still relies on human

involvement. However, accurately annotating and correcting

bug data is not as straightforward as in image or natural

language domains, and it requires a high level of expertise

from the annotators. On the other hand, achieving diversity

in bug types relies on community contributions. Building a

community and fostering the sharing of bugs across different

domains pose significant challenges.

Therefore, we call for and foresee the establishment of

a crowdsourcing platform and deem that such a platform

should have the following features or address the following

issues:

• It should have interactive algorithms and models that

recommend critical bug location information, bug types,

etc., while suggesting other potentially useful informa-

tion that can help users verify these details. It should

also allow users to check and provide feedback on each

piece of data, using this feedback to enable the model

to understand how to help users validate more quickly

and provide more accurate results

• It should propose a reward mechanism to stimulate

community bug contributions. This mechanism needs to

ensure the accuracy of user-contributed data, and then

reward users to continue obtaining the required data on

the platform.

• It is necessary to establish a collaborative mechanism

among users to ensure data quality and to explore

further possibilities for improvement.

VI. RELATED WORK

Bug Datasets Construction. Bug datasets play a pivotal

role in providing empirical and experimental foundations

for various software engineering and programming language

tasks, encompassing software testing, debugging, fault local-

ization, and repair. The research community has witnessed

the proposal of numerous bug datasets, each contribut-

ing to this domain. Noteworthy among them is the SIR

dataset, introduced by Do et al. [24], which stands as a

pioneering work in bug dataset construction. In addition,

datasets like Marmoset [25], QuixBugs [26], IntroClass [27],

Codeflaws [28], and others have emerged from program-

ming assignments and competitions. Open source projects

have also played a significant role in contributing to the

construction of bug datasets, with examples such as DBG-

1926

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

Bench [29], Defects4j [4], BugsJS [30], Bugs.jar [31], and

more. Moreover, bug datasets have been constructed utilizing

runtime continuous integration scenarios like BEARS [1]

and BugSwarm [2]. It is worth mentioning the notable

contribution by Marcel et al. [32], who proposed Corebench,

the largest regression dataset comprising 70 C/C++ regres-

sions. However, these bug datasets are primarily constructed

manually, which poses limitations in terms of scalability

and representativeness. To address this concern, Dallmeier

et al. [33] took the initiative to construct bug datasets in a

semi-automatic manner by analyzing bug issues and relevant

commits. Zhao et al. [34] further replicated bugs based

on Android bug reports, adding to the diversity of bug

datasets. Recently, Jiang et al. [3] introduced BugBuilder,

a tool designed specifically for constructing datasets by iso-

lating bug-relevant changes. Song et al.introduced RegMiner,

an approach to designed for auto constructing regression

datasets from code evolution history.

Bug Classification. Classifying bug categories has many

benefits, such as monitoring frequently occurring bug types

in a project to provide corresponding solutions, conducting

targeted studies on the characteristics of different bug types,

and proposing appropriate repair methods [14], [13], [35].

Additionally, it allows for evaluating the effectiveness of

automated bug localization and bug fixing techniques across

different bug categories [36], [37], [38], [39], [40].

Most existing approaches classified bugs based on bug

reports [41], [42], [43]. Zhou et al. [41] proposed a semi-

supervised Named Entity Recognition (NER) method clas-

sify bug reports, and defined a set of features for model

training. Catolino et al. [42] compared three methods of

extracting features from bug report summaries: TF-IDF[44],

word2vec[45], and doc2vec[46]. They also examined four

classifiers, namely Naive Bayes [47], Support Vector Ma-

chines (SVM) [48], Logistic Regression [49], and Random

Forest [50]. Ultimately, they found that the combination of

TF-IDF and SVM resulted in the best bug classification per-

formance. Only few works utilized bug-fixing commit per-

form bug classification [15], [51]. Ni et al. [15] proposed a

taxonomy of bug types based on commit patches, and utilize

Tree-Based Convolutional Neural Network (TBCNN) [16]

for bug classification. Thung et al. [51] extracted manually

designed features from bug report and bug-fixing commit,

and adopted SVM to classify them.

In conclusion, current bug classification methods do not

fully utilize the multi-modal information available in bug

reports, commit messages, bug-fixing commits and bug-

introducing commits. Additionally, these methods rely either

on manually designed rules or use CNN and LSTM for

feature extraction, without leveraging state-of-the-art pre-

trained models like CodeBERT [19] and CC2Vec [17].

VII. CONCLUSION AND FUTURE WORK

In this work, we have introduced BugMiner, which auto-

matically constructs bug dataset from code evolution history

and provides critical information such as bug locations,

types, and descriptions. We have further defined bug location

and presented effective solutions for it. Our experiments have

demonstrated that BugMiner achieves acceptable accuracy

and recall rates. Moving forward, we aim to enhance the

efficacy and performance of Probabilistic Delta Debugging,

proposing enhanced models to grant the method the ability

to detect and rectify erroneous results in the decompose part.

Furthermore, this paper presents a preliminary exploration

of bug classification, and identifies potential improvements

in future research in terms of data and model aspects.

Regarding data, the current manually annotated dataset is

rather limited and unevenly distributed across bug types.

As a solution, we will consider employing semi-supervised

learning methods [52] to expand the training set and data

augmentation techniques [53] to enhance underrepresented

bug categories. As for the model, we will investigate

attention-based approaches [54] to better integrate features,

and propose new pre-training models specific to bug scenar-

ios.

VIII. ACKNOWLEDGMENT

The authors would like to thank deeply the anonymous

referees for their valuable comments and helpful sugges-

tions. This work was supported in part by National Natural

Science Foundation of China (62172099).

REFERENCES

[1] F. Madeiral, S. Urli, M. de Almeida Maia, and M. Monperrus,
“BEARS: an extensible java bug benchmark for automatic program
repair studies,” in 26th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019 (X. Wang, D. Lo, and E. Shihab, eds.),
pp. 468–478, IEEE, 2019.

[2] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González, “Bugswarm: mining
and continuously growing a dataset of reproducible failures and fixes,”
in Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019
(J. M. Atlee, T. Bultan, and J. Whittle, eds.), pp. 339–349, IEEE /
ACM, 2019.

[3] Y. Jiang, H. Liu, N. Niu, L. Zhang, and Y. Hu, “Extracting concise
bug-fixing patches from human-written patches in version control
systems,” in 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, pp. 686–
698, IEEE, 2021.

[4] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in
International Symposium on Software Testing and Analysis, ISSTA
’14, San Jose, CA, USA - July 21 - 26, 2014 (C. S. Pasareanu and
D. Marinov, eds.), pp. 437–440, ACM, 2014.

[5] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in 2000 International Conference on Soft-
ware Maintenance, ICSM 2000, San Jose, California, USA, October
11-14, 2000, pp. 120–130, IEEE Computer Society, 2000.

[6] M. Mondal, C. K. Roy, and K. A. Schneider, “Identifying code clones
having high possibilities of containing bugs,” in Proceedings of the
25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, May 22-23, 2017 (G. Scanniello,
D. Lo, and A. Serebrenik, eds.), pp. 99–109, IEEE Computer Society,
2017.

[7] B. Hu, Y. Wu, X. Peng, J. Sun, N. Zhan, and J. Wu, “Assessing code
clone harmfulness: Indicators, factors, and counter measures,” in 28th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2021, Honolulu, HI, USA, March 9-12, 2021,
pp. 225–236, IEEE, 2021.

1927

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

[8] X. Song, Y. Lin, S. H. Ng, Y. Wu, X. Peng, J. S. Dong, and H. Mei,
“Regminer: towards constructing a large regression dataset from code
evolution history,” in ISSTA ’22: 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, South
Korea, July 18 - 22, 2022 (S. Ryu and Y. Smaragdakis, eds.), pp. 314–
326, ACM, 2022.

[9] G. Wang, R. Shen, J. Chen, Y. Xiong, and L. Zhang, “Probabilistic
delta debugging,” in ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, Athens, Greece, August 23-28, 2021
(D. Spinellis, G. Gousios, M. Chechik, and M. D. Penta, eds.),
pp. 881–892, ACM, 2021.

[10] M. Hashimoto, A. Mori, and T. Izumida, “Automated patch extraction
via syntax- and semantics-aware delta debugging on source code
changes,” in Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018 (G. T. Leavens, A. Garcia,
and C. S. Pasareanu, eds.), pp. 598–609, ACM, 2018.

[11] M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained structural
change analysis,” in WCRE 2008, Proceedings of the 15th Working
Conference on Reverse Engineering, Antwerp, Belgium, October 15-
18, 2008 (A. E. Hassan, A. Zaidman, and M. D. Penta, eds.), pp. 279–
288, IEEE Computer Society, 2008.

[12] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented
design differencing,” in 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), November 7-11, 2005,
Long Beach, CA, USA (D. F. Redmiles, T. Ellman, and A. Zisman,
eds.), pp. 54–65, ACM, 2005.

[13] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding
and detecting real-world performance bugs,” ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 77–88, 2012.

[14] J. Cao, B. Chen, C. Sun, L. Hu, S. Wu, and X. Peng, “Understanding
performance problems in deep learning systems,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 357–369,
2022.

[15] Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi, “Analyzing bug
fix for automatic bug cause classification,” Journal of Systems and
Software, vol. 163, p. 110538, 2020.

[16] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,”
in Proceedings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

[17] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pp. 518–529,
2020.

[18] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “Fira:
fine-grained graph-based code change representation for automated
commit message generation,” in Proceedings of the 44th International
Conference on Software Engineering, pp. 970–981, 2022.

[19] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert: A pre-
trained model for programming and natural languages,” arXiv preprint
arXiv:2002.08155, 2020.

[20] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “Patchnet:
Hierarchical deep learning-based stable patch identification for the
linux kernel,” IEEE Transactions on Software Engineering, vol. 47,
no. 11, pp. 2471–2486, 2019.

[21] S. Jiang and C. McMillan, “Towards automatic generation of short
summaries of commits,” in 2017 IEEE/ACM 25th International Con-
ference on Program Comprehension (ICPC), pp. 320–323, IEEE,
2017.

[22] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in IJCAI, 2019.

[23] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988, 2017.

[24] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact,” Empir. Softw. Eng., vol. 10, no. 4, pp. 405–435,
2005.

[25] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh, “Software
repository mining with marmoset: An automated programming project

snapshot and testing system,” SIGSOFT Softw. Eng. Notes, vol. 30,
p. 1–5, may 2005.

[26] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: a
multi-lingual program repair benchmark set based on the quixey
challenge,” in Proceedings Companion of the 2017 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, SPLASH 2017, Vancouver, BC,
Canada, October 23 - 27, 2017 (G. C. Murphy, ed.), pp. 55–56, ACM,
2017.

[27] C. L. Goues, N. J. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of C programs,” IEEE Trans. Software Eng.,
vol. 41, no. 12, pp. 1236–1256, 2015.

[28] S. H. Tan, J. Yi, Yulis, S. Mechtaev, and A. Roychoudhury, “Code-
flaws: a programming competition benchmark for evaluating auto-
mated program repair tools,” in Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Ar-
gentina, May 20-28, 2017 - Companion Volume (S. Uchitel, A. Orso,
and M. P. Robillard, eds.), pp. 180–182, IEEE Computer Society,
2017.

[29] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment
with practitioners,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017 (E. Bodden, W. Schäfer, A. van
Deursen, and A. Zisman, eds.), pp. 117–128, ACM, 2017.

[30] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,
R. Ferenc, and A. Mesbah, “Bugsjs: a benchmark of javascript
bugs,” in 12th IEEE Conference on Software Testing, Validation and
Verification, ICST 2019, Xi’an, China, April 22-27, 2019, pp. 90–101,
IEEE, 2019.

[31] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar:
a large-scale, diverse dataset of real-world java bugs,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018 (A. Zaidman,
Y. Kamei, and E. Hill, eds.), pp. 10–13, ACM, 2018.

[32] M. Böhme and A. Roychoudhury, “Corebench: studying complexity
of regression errors,” in International Symposium on Software Testing
and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014
(C. S. Pasareanu and D. Marinov, eds.), pp. 105–115, ACM, 2014.

[33] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), November 5-
9, 2007, Atlanta, Georgia, USA (R. E. K. Stirewalt, A. Egyed, and
B. Fischer, eds.), pp. 433–436, ACM, 2007.

[34] Y. Zhao, K. Miller, T. Yu, W. Zheng, and M. Pu, “Automatically
extracting bug reproducing steps from android bug reports,” in Reuse
in the Big Data Era - 18th International Conference on Software
and Systems Reuse, ICSR 2019, Cincinnati, OH, USA, June 26-28,
2019, Proceedings (X. Peng, A. Ampatzoglou, and T. Bhowmik,
eds.), vol. 11602 of Lecture Notes in Computer Science, pp. 100–
111, Springer, 2019.

[35] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proceedings of the
27th ACM SIGSOFT international symposium on software testing and
analysis, pp. 129–140, 2018.

[36] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from soft-
ware changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 262–273, 2016.

[37] J. Cao, S. Yang, W. Jiang, H. Zeng, B. Shen, and H. Zhong,
“Bugpecker: Locating faulty methods with deep learning on revision
graphs,” in Proceedings of the 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 1214–1218, 2020.

[38] S. Yang, J. Cao, H. Zeng, B. Shen, and H. Zhong, “Locating faulty
methods with a mixed rnn and attention model,” in 2021 IEEE/ACM
29th International Conference on Program Comprehension (ICPC),
pp. 207–218, IEEE, 2021.

[39] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–27, 2019.

[40] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations (ICLR), 2020.

[41] C. Zhou, B. Li, X. Sun, and H. Guo, “Recognizing software bug-
specific named entity in software bug repository,” in Proceedings of
the 26th Conference on Program Comprehension, pp. 108–119, 2018.

1928

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

[42] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all
bugs are the same: Understanding, characterizing, and classifying bug
types,” Journal of Systems and Software, vol. 152, pp. 165–181, 2019.

[43] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in 2013 35th international
conference on software engineering (ICSE), pp. 392–401, IEEE, 2013.

[44] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp. 513–523, 1988.

[45] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method,” CoRR,
vol. abs/1402.3722, 2014.

[46] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32,
ICML’14, p. II–1188–II–1196, JMLR.org, 2014.

[47] G. I. Webb, E. Keogh, and R. Miikkulainen, “Naı̈ve bayes.,” Ency-
clopedia of machine learning, vol. 15, no. 1, pp. 713–714, 2010.

[48] D. A. Pisner and D. M. Schnyer, “Support vector machine,” in
Machine learning, pp. 101–121, Elsevier, 2020.

[49] M. P. LaValley, “Logistic regression,” Circulation, vol. 117, no. 18,
pp. 2395–2399, 2008.

[50] S. J. Rigatti, “Random forest,” Journal of Insurance Medicine, vol. 47,
no. 1, pp. 31–39, 2017.

[51] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,” in
2012 19th working conference on reverse engineering, pp. 205–214,
IEEE, 2012.

[52] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré,
“Snorkel: Rapid training data creation with weak supervision,” in
Proceedings of the VLDB Endowment. International Conference on
Very Large Data Bases, vol. 11, p. 269, NIH Public Access, 2017.

[53] H. Xie, Y. Lei, M. Yan, Y. Yu, X. Xia, and X. Mao, “A universal data
augmentation approach for fault localization,” in Proceedings of the
44th International Conference on Software Engineering, pp. 48–60,
2022.

[54] Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional
feature fusion,” in Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pp. 3560–3569, 2021.

1929

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 11,2024 at 13:34:33 UTC from IEEE Xplore. Restrictions apply.

